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Structure functions in deep-inelastic scattering (DIS) provide an important (and accessible,

via forward Compton amplitudes) laboratory for studying higher-order effects in pertur-

bative QCD. Indeed, they are presently the only observables depending on a dimensionless

variable (Bjorken-x in the case at hand) for which Feynman diagram calculations have been

extended to the third order in the strong coupling αs [1–5]. Such calculations are not only

relevant phenomenologically, but also open up ways to new results for different quantities.

For instance, a direct line runs from an observation on subleading large-x logarithms at

three loop [1, 2] via its interpretation in ref. [6] to first results on the third-order splitting

functions for the final-state parton fragmentation [7, 8].

In the present letter we study the same class of large-x contributions, αn
s ln k(1 − x),

to the higher-order quark coefficient functions [3, 4, 9–11] for the longitudinal structure

function FL (an analogous investigation of F2 and F3 will be presented elsewhere [12] )

where these logarithms form the leading terms at x → 1. Such contributions have been

addressed before in refs. [13–17], but no explicit all-order predictions have been presented

so far for any coefficient function beyond the leading logarithms. This situation for the

leading large-x behaviour of FL is in striking contrast to that for F2 and F3 where the soft-

gluon exponentiation [18, 19] is known to the next-to-next-to-next-to-leading logarithmic

accuracy and predicts the leading seven term to all orders in αs [20].

The (flavour non-singlet) quark coefficient functions Ca,ns provide the connection be-

tween the structure functions Fa, ns and the corresponding quark distributions qns ,

Fa=2,L

(
x,Q2

)
≡ x−1Fa, ns

(
x,Q2

)
= Ca,ns(x, αs) ⊗ qns

(
x,Q2

)

=
[
(1 − δaL)δ (1 − x) +

∑

n=1

an
s c (n)

a,q (x)
]
⊗ qns

(
x,Q2

)
, (1)

where ⊗ stands for the standard Mellin convolution, given by

[a ⊗ b](x) =

∫ 1

x

dy

y
a(y) b

(
x

y

)
(2)

for two regular functions and eq. (3.4) of ref. [21] if a +-distribution is involved. The

renormalization and factorization scales µr and µf have been set to the physical hard scale

Q 2 in eq. (1), and the expansion parameter is normalized as as = αs/(4π).

The large-x expansion of the MS coefficient function for FL reads

CL,ns(αs, x) =
∑

n=1

an
s c

(n)
L,q(x)

=
∑

n=1

an
s

{
2n−2∑

k=0

ln k(1 − x)
[
c̄

(n)
L, k + (1 − x) d̄

(n)
L, k + O

(
(1 − x)2

) ]
}

M−trf
=

1

N

∑

n=1

an
s

{
2n−2∑

k=0

ln k N

[
c

(n)
L, k +

1

N
d

(n)
L, k + O

(
1

N 2

)]}
. (3)

Here and below M−trf
= indicates that the right-hand-side is the Mellin transform of the

previous (regular or +-distribution) expression,

aN =

∫ 1

0
dx xN−1a(x) or aN =

∫ 1

0
dx
(
xN−1

− 1
)
a(x)+ . (4)
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The leading x- and N -space coefficients c̄
(n)
L, k and c

(n)
L, k in eq. (3) are related via

(−1)k
∫ 1

0
dx xN−1 ln k(1 − x) = k!

1

N
S1, . . . , 1︸ ︷︷ ︸

k

(N)

=
1

N
ln kÑ +

k∑

l=2

k!

l(k − l)!
ζ̄ l

1

N
ln k−lÑ + O

(
1

N 2
ln k−1 N

)

(5)

with Ñ = Ne γe and the Riemann-zeta combinations ζ̄2,3 = ζ2,3, ζ̄4 = ζ4 + 1
2ζ2

2 , ζ̄5 =

ζ5 + 5
6ζ2ζ3 etc. See refs. [22, 23] for the notation and properties of the harmonic sums

Sm1,..., mk
(N).

It is convenient, both phenomenologically (especially for F2 and F3) and theoretically,

to express the scaling violations of non-singlet structure functions in terms of these structure

functions themselves. This explicitly eliminates any dependence on the factorization scheme

and the scale µf . The corresponding ‘physical evolution kernels’ Ka can be derived for

µ 2
r = Q 2 by differentiating eq. (1) with respect to Q 2 by means of the evolution equations

for as = αs/(4π) and qns,

d as

d ln Q 2
= β(as) = −β0 a 2

s − β1 a 3
s − . . . , β0 =

11

3
CA −

2

3
nf , (6)

d qns

d ln Q 2
= Pns ⊗ qns =

∑

n=1

an
s An[1 − x]−1

+ ⊗ qns + . . . M−trf
= −

∑

n=1

an
s An ln N + . . . . (7)

The ‘cusp anomalous dimension’ A(as) = A1 as + A2 a 2
s + . . . with A1 = 4CF has been

calculated to order α 3
s [1]. Finally using the inverse of eq. (1) to eliminate qns leads to the

evolution equations

d

d ln Q 2
Fa =

{
Pns(as) + β(as)

d

das
ln Ca(as)

}
⊗Fa = Ka ⊗ Fa ≡

∑

n=1

an
s K (n)

a ⊗ Fa.

(8)

Here ln Ca(as) is a short-hand for the inverse Mellin transform of the logarithm of the N -

space expression C N
a (as) given by eq. (4). Inserting the coefficients known from refs. [3, 4],

the same leading-logarithmic behaviour for both F2 and FL, viz

K (n)
a (x) = A1(−β0)

n−1

[
lnn−1(1 − x)

1 − x

]

+

+ O

([
lnn−2(1 − x)

1 − x

]

+

)

M−trf
= −

A1β
n−1
0

n
lnn N + O

(
lnn−1 N

)
, (9)

is established to n = 4 for F2 and n = 3 for FL. For F2 the soft-gluon resumma-

tion [18–20],

C 2,ns(N, as) = g
(0)
2 (as) exp

[
Lg

(1)
2 (as L) + g

(2)
2 (as L) + . . .

]
, g

(i)
2 (λ) =

∑

j

g
(i)
2j λj , (10)

– 3 –
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(L ≡ ln N) guarantees eq. (9) to all orders in αs [21]. It is crucial that the physical

kernel, unlike the coefficient functions, receives only this single-logarithmic higher-order

enhancement for x → 1 .

We are now, finally, in a position to state the conjecture announced in the abstract.

It is (a) that this single-logarithmic enhancement remains true for FL beyond order α 3
s

and (b) that eq. (9) holds to (at least) n = 4 also for FL. (a) implies that that there is

an exponentiation as eq. (10) (but, of course, with an overall prefactor N−1) also for FL

with some functions g
(i)
L . (b) additionally requires that the leading logarithmic functions

g
(1)
a are actually the same for a = 2 and a = L to (at least) order α 3

s . We consider the

results of refs. [13, 14, 17] as sufficient evidence for these natural assumptions generalizing

our fixed-order results. In particular, it may be expected that the new approach of ref. [17]

will facilitate a full proof in the future.

Inserting eqs. (3), (6) and (7) into eq. (8) and imposing the vanishing of the resulting

αn
s ln 2n−2 and αn

s ln 2n−3 contributions to K
(n)
L at n ≥ 4 fixes the coefficients of the two

highest logarithms in eq. (3) to all orders n in αs (with θnj = 1 for n ≥ j and θnj = 0 else) :

c
(n)
L, 2n−2 = 2(2CF )n

1

(n − 1)!
, (11)

c
(n)
L, 2n−3 = c

(2)
L, 1 (2CF )n−2 θn2

(n − 2)!
+

2β0

3
(2CF )n−1 θn3

(n − 3)!
. (12)

We have conjectured eq. (11) before [3] on the basis of the explicit calculations for n ≤ 3

and the results of refs. [13, 14]. To the best of our knowledge, eq. (12) has not been

written down before. Furthermore the vanishing of the αn
s ln 2n−4 contributions to K

(n)
L at

n ≥ 5 yields

c
(n)
L, 2n−4 = c

(3)
L, 2 (2CF )n−3 θn3

(n − 3)!
+

β0

3
c

(2)
L, 1 (2CF )n−3 θn4

(n − 4)!

− c
(2)
L, 0 (2CF )n−2 (n − 3)θn4

(n − 2)!
+

β2
0

9
(2CF )n−2 θn5

(n − 5)!

−
2

3β0
K

(4)
L

∣∣∣
ln 4 N

(2CF )n−3 θn4

(n − 4)!
. (13)

The last line includes the leading term of the physical kernel at order α 4
s , i.e., we have

not included conjecture (b) in the derivation of eq. (13). After inserting eq. (9) for a = L

and n = 4, i.e., applying also (b), we arrive at a definite prediction also for the third

tower (13) of logarithms, thus reaching the predictive power of a next-to-leading logarithmic

exponentiation, cf. ref. [20]. The other coefficients in eqs. (11)–(13) can be extracted from

the loop calculations in refs. [3, 4, 9–11],

c
(1)
L, 0 = 4CF (14)

c
(2)
L, 1 = CF CA

[
92

3
− 16 ζ2

]
− C 2

F [36 − 32 ζ2 − 16 γe] −
8

3
CF nf (15)

c
(2)
L, 0 = − C 2

F

[
34 + 40 ζ2 − 48 ζ3 + 36 γe − 32 γeζ2 − 8 γ 2

e

]

– 4 –
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+ CF CA

[
430

9
+ 16 ζ2 − 24 ζ3 +

92

3
γe − 16 γeζ2

]
− CF nf

[
76

9
+

8

3
γe

]
(16)

c
(3)
L, 2 = − C 3

F

[
34 − 16 ζ2 + 32 ζ3 + 216 γe − 192 γeζ2 − 48 γ 2

e

]
+

16

9
CF n 2

f

− C 2
F CA

[
530

9
− 80 ζ2 − 80 ζ3 −

640

3
γe + 96 γeζ2

]
− CF CAnf

[
320

9
− 16 ζ2

]

+ CF C 2
A

[
1276

9
− 56 ζ2 − 32 ζ3

]
+ C 2

F nf

[
92

9
− 32 ζ2 −

64

3
γe

]
. (17)

Inserting eqs. (14)–(17) into eqs. (11)–(13) and transforming back to x-space, one arrives

at the four-loop prediction (using Lx ≡ ln(1 − x) for brevity)

c
(4)
L,q(x) =

16

3
C 4

F L 6
x +

{
[72 − 64ζ2]C

4
F −

[
728

9
− 32ζ2

]
C 3

F CA +
80

9
C 3

F nf

}
L 5

x

+

{
[32ζ2 − 160ζ3] C

4
F −

[
904

3
−

1856

9
ζ2 − 208ζ3

]
C 3

F CA +

[
160

3
−

704

9
ζ2

]
C 3

F nf

+

[
3388

9
−

1360

9
ζ2 − 64ζ3

]
C 2

F C 2
A −

[
880

9
−

352

9
ζ2

]
C 2

F CAnf +
16

3
C 2

F n 2
f

}
L 4

x

+O(L 3
x ). (18)

This result will become useful also outside the large-x region in combination with a future

generalization of ref. [24] to low fixed-N moments at order α 4
s , since fewer moments will

be needed for a useful x-space approximation analogous to ref. [21].

For future applications and possible extensions to next-to-next-to-leading logarithmic

accuracy, it is useful to reformulate eqs. (14) – (17) in terms of the exponentiation coeffi-

cients gij ≡ g
(i)
Lj . For this purpose we adapt eq. (14) of ref. [25] to the present case with

g
(0)
L = N−1[ asc

(1)
L, 0 + O(a 2

s )] instead of g
(0)
2 = 1 + O(as), yielding

c
(n)
L, 2n−2 /(4CF ) =

g n−1
11

(n − 1)!
, (19)

c
(n)
L, 2n−3 /(4CF ) =

θn2 g n−2
11

(n − 2)!
g21 +

θn3 g n−3
11

(n − 3)!
g12 , (20)

c
(n)
L, 2n−4 /(4CF ) =

θn2 g n−2
11

(n − 2)!
g01 +

θn3 g n−3
11

(n − 3)!

(
g22 +

1

2
g 2
21

)
+

θn4 g n−4
11

(n − 4)!

(
g13 + g12g21

)

+
θn5 g n−5

11

2(n − 5)!
g 2
12 . (21)

Eqs. (11) and (12) are obviously compatible with eqs. (19) and (20). Also eq. (13) can be

recast in the form (21) by suitably combining the first and the last term in the first line.

The comparison of the two sets of expressions then leads to

g11 = 2CF , g12 =
2

3
β0 CF , g13 =

1

3
β 2

0 CF , (22)

– 5 –
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g21 = β0 + 4 γeCF − CF + (4 − 4 ζ2)(CA − 2CF ) (23)

and

g22 =−32C 2
F

[
1 − 3 ζ2 + ζ3 + ζ 2

2

]

+ CF CA

[
547

18
−

256

3
ζ2 + 32 ζ3 + 32 ζ 2

2 +
22

3
γe

]
+

2

9
n 2
f

+ C 2
A

[
109

18
+

50

3
ζ2 − 8 ζ3 − 8 ζ 2

2

]
+ CF nf

[
7

9
−

8

3
ζ2 −

4

3
γe

]

− CAnf

[
34

9
−

4

3
ζ2

]

=
1

2
(β0 g21 + A2) − 8 (CA − 2CF )2

(
1 − 3 ζ2 + ζ3 + ζ 2

2

)
(24)

with the two-loop cusp anomalous dimension A2 = 8CF K, K = (67/18 − ζ2)CA −

5nf/9 [26].

Some comments are in order here: As expected from the discussion below eq. (10) the

relations (22), with the value of g13 due to conjecture (b), are identical to eq. (9) in ref. [25].

The third and first term of eq. (23) are identical, up to a trivial normalization factor, to

γJ ′ in eq. (16) of ref. [13] — see also eq. (48) of ref. [14] and note that the presence of γe in

eq. (23) results from our use of L ≡ ln N instead of ln Ñ in eq. (10) (keeping γe facilitates

some easy checks).

As shown by the last line of eq. (24), the coefficient g22 ≡ g
(2)
L2 in the expansion of

g
(2)
L (asL) does not follow the pattern of the resummation for F2 which would demand

g22 = 1/2 (β0 g21 + A2) (cf., e.g., eq. (10) of ref. [25] ), i.e., the absence of the ‘non-planar’

(CA − 2CF )2 part in eq. (24). Hence also g
(2)
L3 cannot be predicted at this point (if at all

— consider the ζ3 contributions to eqs. (16), (17) and (24) ) from lower-order information.

Consequently c
(3)
L, 1, known from ref. [4], can be used to derive g

(3)
L1 , but not (yet) the fourth

tower c
(n)
L, 2n−4 of logarithms at orders n ≥ 4.

Let us briefly turn to the gluon coefficient function CL,g for the structure function FL

which is suppressed by an(other) order in (1−x). From the third-order results in refs. [3, 4]

we extract that

CL,g(αs, x) =
∑

n=1

an
s

{
8nf

(2CA)n−1

(n − 1)!

1

N 2
ln 2n−2 N + O

(
1

N 2
ln 2n−3 N

)}
(25)

holds for the first three terms of the expansion in powers of αs (for n = 1 one obviously

has O(N −3) instead of the last term in eq. (25) ). The generalization to all n can be

obtained via the physical kernel for the ‘non-singlet’ (no gluons emitted from quarks, i.e.,

only the C k
A nn−k

f terms are kept) gluon contribution to FL (cf. also ref. [8] ). In fact, in

this unphysical limit our whole previous treatment of the (non-singlet — the pure-singlet

part does not contribute at the present accuracy) quark coefficient function can be carried

– 6 –
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over to the gluon case in an obvious manner. Since they might be of theoretical interest at

some point, we present here the relations corresponding to eqs. (22)–(24):

g11,g = 2CA, g12,g =
2

3
β0 CA, g13,g =

1

3
β 2

0 CA, (26)

g21,g = (8 + 4 γe)CA, g22,g =
1

2
[β0 g21,g + A2,g] + C 2

A (18 − 8 ζ2) (27)

with A2,g = CA/CF A2. The situation for g22,g is analogous, if simpler in terms of the

ζ-function, to that in eq. (24) discussed above.

Returning to the quark case, we note that also the subleading ln k(1−x) or N −1 ln k N

contributions to the physical kernel (8) show only a single logarithmic higher-order enhance-

ment, again in contrast to the corresponding (1−x) ln k(1−x) or N −2 ln k N terms in the

coefficient function. I.e.,

K (n)
a (x)

∣∣∣
ln k(1−x)

M−trf
= K (n)

a (N)
∣∣∣
N−1 lnk N

= 0 for k ≥ n (28)

where, as before, n stands for the order in αs. Also eq. (28) is the result of the fixed-order

calculations [3–5] at n ≤ 4 for a = 2, 3 — the missing four-loop splitting function does not

contribute at this logarithmic level [6] – and at n ≤ 3 for a = L. It appears almost obvious

that also this result holds to all orders. Hence we can predict, completely analogous to

eqs. (11)–(13), the three sub-leading coefficients d
(n)
L, 2n−1−k, k = 1, 2, 3 in eq. (3) at all higher

orders, and ‘postdict’ d
(2)
L,2 (and d

(3)
L,4 and d

(3)
L,3 ) from first- (and second-) order coefficients.

Due to d
(1)
L, 0 = −c

(1)
L, 0 the overall signs are opposite to those in eqs. (11)–(13), and the most

compact representation of the results is obtained via the sum of the corresponding ln k N

and N −1 ln k N coefficients. It reads

d
(n)
L, 2n−2 =−c

(n)
L, 2n−2 , (29)

d
(n)
L, 2n−3 =−c

(n)
L, 2n−3 +

{
d

(2)
L, 1 + c

(2)
L, 1

}
(2CF )n−2 θn2

(n − 2)!
, (30)

d
(n)
L, 2n−4 =−c

(n)
L, 2n−4 +

{
d

(3)
L, 2 + c

(3)
L, 2

}
(2CF )n−3 θn3

(n − 3)!
(31)

+
{
d

(2)
L, 1 + c

(2)
L, 1

}β0

3
(2CF )n−3 θn4

(n − 4)!

−

{
d

(2)
L, 0 − c

(2)
L, 0

}
(2CF )n−2 (n − 3)θn4

(n − 2)!
.

The lower-order coefficients entering these relations read

d
(2)
L, 1 =−c

(2)
L, 1 − 8C 2

F , (32)

d
(2)
L, 0 =−c

(2)
L, 0 + C 2

F [ 14 + 16 ζ2 − 8 γe ] − CF CA [ 14 + 8 ζ2 ] + 4CF nf , (33)

d
(3)
L, 2 =−c

(3)
L, 2 + C 3

F [ 148 − 32 ζ2 − 48 γe ] − C 2
F CA [ 104 − 16 ζ2] + 16C 2

F nf . (34)

Obviously it is possible to recast also eqs. (29)–(31) into an exponential form analogous

to eqs. (19)–(24). The corresponding leading-logarithmic function g̃1 is the same as in

– 7 –
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eqs. (22), while g̃21 and g̃22 differ from their counterparts in eqs. (23) and (24) by 2CF

and CF β0 − 14C 2
F , respectively. The ζ-function contributions, in particular, are the same.

For comparison and use with future four-loop computations, we also carry out the inverse

Mellin transform of these results for n = 4. This leads to

c
(4)
L,q(x)= eq. (18)

−(1 − x)

(
16

3
C 4

F L 6
x +

{
[ 8 − 64 ζ2]C

4
F −

[
728

9
− 32 ζ2

]
C 3

F CA +
80

9
C 3

F nf

}
L 5

x

−

{
[ 568 − 608 ζ2 + 160 ζ3]C

4
F +

[
4544

9
−

736

9
ζ2 + 208 ζ3

]
C 3

F CA

+

[
3388

9
−

1360

9
ζ2 − 64 ζ3

]
C 2

F C 2
A −

[
368

9
+

704

9
ζ2

]
C 3

F nf

−

[
880

9
−

352

9
ζ2

]
C 2

F CAnf +
16

3
C 2

F n 2
f

}
L 4

x + O(L 3
x )

)
+ O

(
(1 − x)2

)
. (35)

Finally we briefly illustrate the approximations of the N -space coefficient functions

c
(n)
L,ns(N) in terms of the leading N −1 ln k Ñ contributions (obtained from eqs. (11)–(13) by

nullifying the Euler-Mascheroni constant γe in eqs. (15)–(17), recall ln Ñ = ln N + γe). In

the left part of figure 1 we compare the successive approximations obtained by including

one (only the ln 4 Ñ term, the curve labeled ‘1’ in the figure), two (that and the ln 3 Ñ term,

curve 2) etc large-N logarithms to the complete result of refs. [3, 4]. We see that including

all four logarithms leads to a good approximation down to surprisingly low values of N ,

and that the highest three logarithms provide a reasonable first estimate at large N .

Our new predictions (19)–(21) for the three highest logarithms at order α 4
s are shown

in the same manner in the right part of figure 1. Comparing the shape and relative

size of these terms with those of the three-loop contributions, one has to conclude that

three leading logarithms alone are insufficient for a quantitative prediction of the unknown

coefficient function for FL. One may expect that the complete coefficient function exceeds

the three-logarithm result in figure 1 by a factor of about 1.5 to 3 at N ≃ 15 . . . 30. This

is consistent with the fourth-order Padé predictions, e.g.,

CL,ns(N = 20) = 0.0202αs + 0.108α 2
s + 0.465α 3

s + 2.0 [1/1] Padé α 4
s + . . . . (36)

Hence the present results are compatible with (but of course not conclusive of) a fourth-

order continuation of the very slow large-N convergence of FL already discussed at order

α 3
s in ref. [4].

To summarize: based on the natural conjecture that the physical non-singlet evolution

kernel for FL continues to contain only one logarithm of 1−x per power of αs also beyond the

order α 3
s fixed by refs. [3, 4], we have derived an explicit ‘bottom-up’ all-order resummation

of the leading and sub-leading large Mellin-N contributions, αn
s N−l ln k N for l = 1 and l =

2, to the quark coefficient function for this structure function in deep-inelastic scattering.
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Figure 1. Successive large-N approximations by the leading 1, 2, 3 and (left) 4 large-N logarithms

ln k Ñ ≡ (lnN+γe)
k for the third- and fourth-order quark coefficient function of FL for four flavours.

Also shown is the complete third-order all-N result computed in Refs [3, 4]. The curves have been

scaled to correspond to the expansion parameter αs instead of as = αs/(4π) used in our formulae.

Specifically we obtain the three highest logarithms at each order n ≥ 4, i.e., the terms

αn
s (1−x)l−1 ln 2n−1−k(1−x) for l = 1, 2 and k = 1, 2, 3 after transformation to Bjorken-

x space. These contributions alone are not relevant for phenomenology, but will become

useful in conjunction with future higher-order calculations of, e.g., some integer-N moments

of this coefficient function.

With three terms per order, our present resummation has the predictive power of a

next-to-leading logarithmic exponentiation, cf. ref. [20]. However, writing the results in a

manner analogous to the well-known exponentiation of the αn
s ln k N contributions to, e.g.,

the structure function F2, we notice a peculiar behaviour of the next-to-leading function

g2(αs ln N) in the exponent: the second Taylor-coefficient is not, as for F2, a simple function

of the first and the α 2
s cusp anomalous dimension, and hence the third coefficient cannot

be predicted at this point (if at all). If that coefficient could be derived in a ‘top-down’

approach complementary to that of this letter, then a forth tower of logarithms would be

calculable via matching to the known (but presently unused) α 3
s ln N coefficient. It might

even become possible to achieve a full next-to-next-to-leading logarithmic accuracy which

would provide a realistic estimate of the fourth-order large-x coefficient function.
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